

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

¹H- and ¹³C-NMR Study of Some 6,7-Dihaloquinolone Nucleosides and Their Derivatives

Najim A. Al-Masoudi^a; Yaseen A. Al-Soud^b; Armin Geyer^a

^a Faculty of Chemistry, University of Konstanz, Konstanz, Germany ^b Faculty of Science, Al-Isra University, Amman-Jordan

To cite this Article Al-Masoudi, Najim A. , Al-Soud, Yaseen A. and Geyer, Armin(1998) '¹H- and ¹³C-NMR Study of Some 6,7-Dihaloquinolone Nucleosides and Their Derivatives', Spectroscopy Letters, 31: 5, 1031 – 1038

To link to this Article: DOI: 10.1080/00387019808003281

URL: <http://dx.doi.org/10.1080/00387019808003281>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

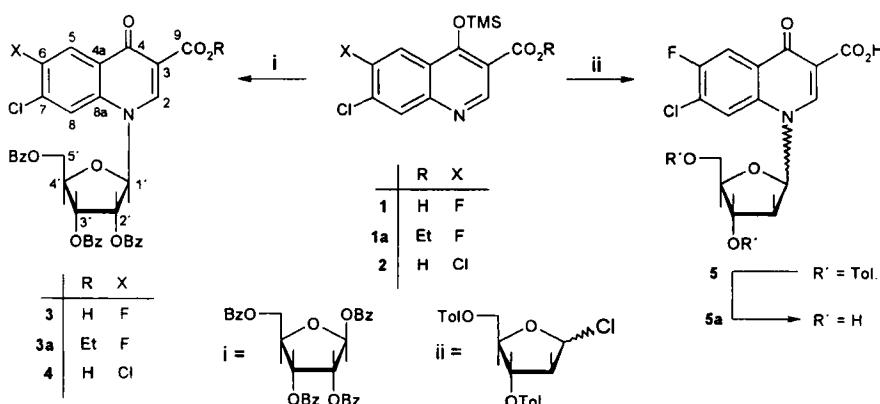
**¹H- AND ¹³C-NMR STUDY OF SOME 6,7-DIHALOQUINOLONE
NUCLEOSIDES AND THEIR DERIVATIVES**

Key words: quinolone, nucleosides, ¹H- and ¹³C-NMR, 2D-NMR (ROESY, HMBC, HMQC).

Najim A. Al-Masoudi ^{**}, Yaseen A. Al-Soud ^b and Armin Geyer ^{**}

^a Faculty of Chemistry, University of Konstanz, D-78434 Konstanz, Germany.

^b Faculty of Science, Al-Isra University, Amman-Jordan.


ABSTRACT: The ¹H- and ¹³C-NMR spectra of 6,7-dihalo-1,4-dihydro-4-oxo-1-(2,3,5-tri-O-benzoyl- β -D-ribofuranosyl)quinoline-3-carboxylic acids (3), (4), the ester (3a), 6-chloro-1-(2-deoxy-3,5-di-O-tolouyl- α - and β -D-*erythropentofuranosyl)-7-fluoro-1,4-dihydro-4-oxo-quinoline-3-carboxylic acid (5), and its free α -nucleoside (5a) have been investigated. Resonance signals were assigned by homo- and heteronuclear two dimensional NMR methods (DQF-COSY, HMQC, and HMBC) for (3), (4), (5), and (5a). Ribosylation sites and anomeric configurations were identified from ROESY spectra.*

INTRODUCTION

The interesting biological activities of the synthetic quinolines as antibacterial¹⁻³ and antiviral⁴ agents or dehydrogenase inhibitors⁵ urged many laboratories to construct numerous analogues of such compounds. In the present study, the spectral characteristics ⁶⁻⁹ of some new dihaloquinolone nucleosides were investigated.

RESULTS AND DISCUSSION

The N-nucleoside analogues 6,7-dihalo-1,4-dihydro-4-oxo-1-(2,3,4-tri-O-benzoyl- β -D-ribofuranosyl)quinoline-3-carboxylic acids (3), (4), the ester (3a), and the 6-chloro-1- α -D-*erythropentofuranosyl*-7-fluoro-1,4-dihydro-4-oxoquinoline-3-carboxylic acid (5a) were prepared by ribosylation of the silylated quinolones 6,7-dihaloquinolones (1, 1a, and 2) with ribose- and 2-deoxyribose derivatives *via* the Hilbert-Johnson Brikofer method¹⁰.

The proton spin systems were identified from DQF-COSY¹¹ spectra, chemical shifts are listed in Table 1. Compounds 3 and 4 are discussed explicitly in the following, the assignments of 3a, 5, and 5a were performed in the same way. The anomeric coupling constants of 3 and 4 are typical for β -configurated ribofuranoses (5.4 and 4.9 Hz, respectively). The rotating frame nuclear Overhauser effect (ROE)¹² between H-1' and H-4' is an additional proof for β -configuration. Ribosylation of 1 and 2 occurred at the N-site of the quinolone. This was also visible in the ROESY spectra where the anomeric protons of 3 and 4 showed cross signals to both H-2 and H-8 (*syn*- and *anti*- rotamers about the glycosidic bond), but not to H-5. (Fig.1).

Proton bearing carbons were detected in HMQC spectra¹³. Gradient selected HMBC spectra¹⁴ allowed via $^2\text{J}_{\text{C},\text{H}}$ and $^3\text{J}_{\text{C},\text{H}}$ couplings the assignment of the residual

Table 1.

¹H- NMR chemical shifts [ppm] and coupling constants in CDCl₃ (600 MHz, 300 K).

	3¹)	3a	4	5 (α)	5 (β)	5a
H-1'	6.51	6.47	6.51	6.53	6.45	6.63
H-2'	5.91	²)	⁵)	3.19	3.01	2.85
H-2''	--	--	--	2.60	2.75	2.11
H-3'	5.87	²)	⁵)	5.71	5.60	4.30
H-4'	4.98	4.95	4.97	5.18	4.79	4.56
H-5'	4.93	³)	4.93	4.80	4.71	⁶)
H-5''	4.88	³)	4.87	4.59	4.66	⁶)
J _{1',2'}	5.4 Hz	5.0 Hz	4.9 Hz	6.2 Hz	4.2 Hz	6.5 Hz
<u>heterocyclic ring</u>						
H-2	9.23	8.95	9.21	9.19	9.14	9.06
H-5	8.21	8.90	8.54	8.20	7.70	8.23
J _{5,F}	8.4 Hz	8.9 Hz		9.0 Hz	9.1 Hz	9.1 Hz
H-8	8.02	7.88	8.02	7.87	7.68	8.36
J _{8,F}	5.5 Hz	5.6 Hz		6.0 Hz	6.2 Hz	7.9 Hz
H-9	14.08 (br)	⁴)	(br)			

br = broad; ¹) ring couplings: J_{2,3'} = 5.5 Hz, J_{3',4'} = 4.3 Hz, J_{4',5'} = 3.5, J_{4',5''} = 3 Hz, J_{5',5''} = 12.7 Hz; ²) 5.89 ppm H-2' and H-3'; ³) 4.88 ppm H-5' and H-5''; ⁴) CO₂Et: 4.07 ppm (2H, q), 1.22 ppm (3H, t); ⁵) 5.83 – 5.89 ppm H-2' and H3'; ⁶) 3.49 – 3.53 ppm (2H, m)

quaternary carbons (Fig. 2). The ³J_{C,H} correlation of C-1' and H-2 is an additional proof for N-ribosylation in 4. Carbons C-9 resonate at lowest field at δ_C 177.5 and 177.3 due to the deshielding nature around them. This is also visible for C-4 appearing at δ_C 165.3 and 165.1. The three carbonyls of the benzoate group resonate between δ_C 166.1 and 164.6. The olefinic carbons C-2 appear between δ 143.9 and 142.7. The presence of fluorine at C-6 in compound 3 results in the appearance of a doublet with the large one-bond coupling constant of 253.6 Hz at δ_C 156.0. C-6 in 4 appears as a singlet at higher field δ_C 131.8. The neighbouring carbons C-7 (δ_C 129.2) and C-5 (δ_C 113.6) in 3 show smaller two-bond couplings to fluorine of 20.8 Hz and 23.1 Hz, respectively. C-7 and C-5 in 4 resonate at lower field at δ_C 139.2 and δ_C 128.7, respectively.

The fused carbon C-4a of the quinoline system of the fluorinated compound 3 resonates as a doublet at δ_C 126.6 with a small coupling (J_{4a,F} = 6.4 Hz), carbons C-8a appear as singlets at δ_C 135.6 and 137.6, respectively. δ_C 125.7 and 137.6 were assigned to C-4a and C-8a of the dichloro compound 4.

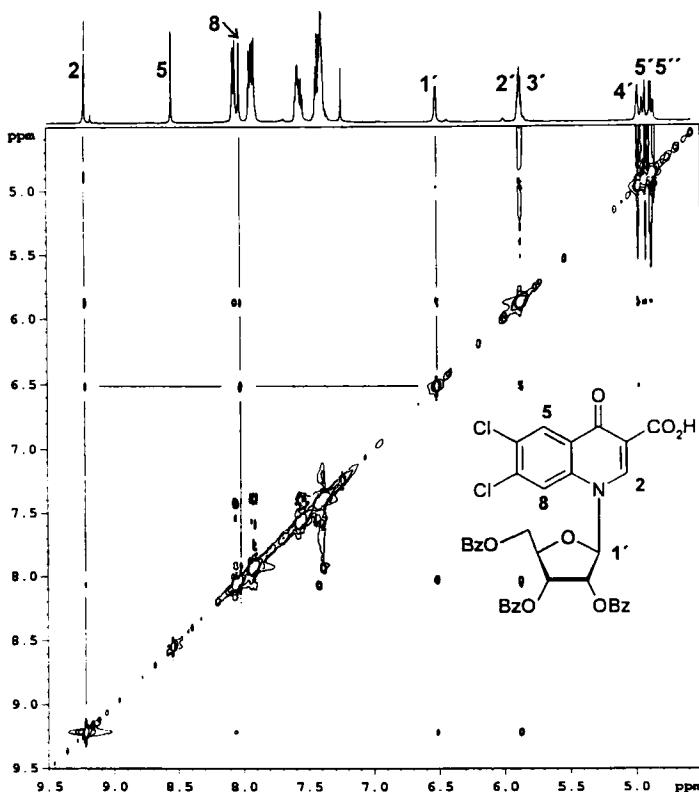


Fig. 1 2D ROESY spectrum of **4** in CDCl_3 (300 K, 600 MHz).

The para carbons of the aromatic rings of the benzoyl groups atoms resonate between δ_{C} 133.6 and 134.3, the ortho carbons were detected between δ_{C} 129.8 and 129.7, and the meta carbons between δ_{C} 128.8 and 128.6. The singlets between δ_{C} 128.9 and 127.6 were attributed to the quaternary carbon atoms of the aromatic groups. The resonances at δ_{C} 118.8 (**3**) and 118.1 (**4**) were assigned to C-8, while the signals at δ_{C} 113.6 (**3**, $J_{\text{S},\text{F}} = 23.1$ Hz) and 128.7 (**4**) were assigned to C-5. The C-3 were attributed to the signals at δ_{C} 109.7 and 110.3. The ^{13}C and ^1H chemical shifts of sugar moiety are very similar for **3** and **4**, the assignment was performed from the HMQC spectrum, the anomeric CH- groups appear separated at δ_{C} 91.1 (**3**) and δ_{C} 90.8 (**4**).

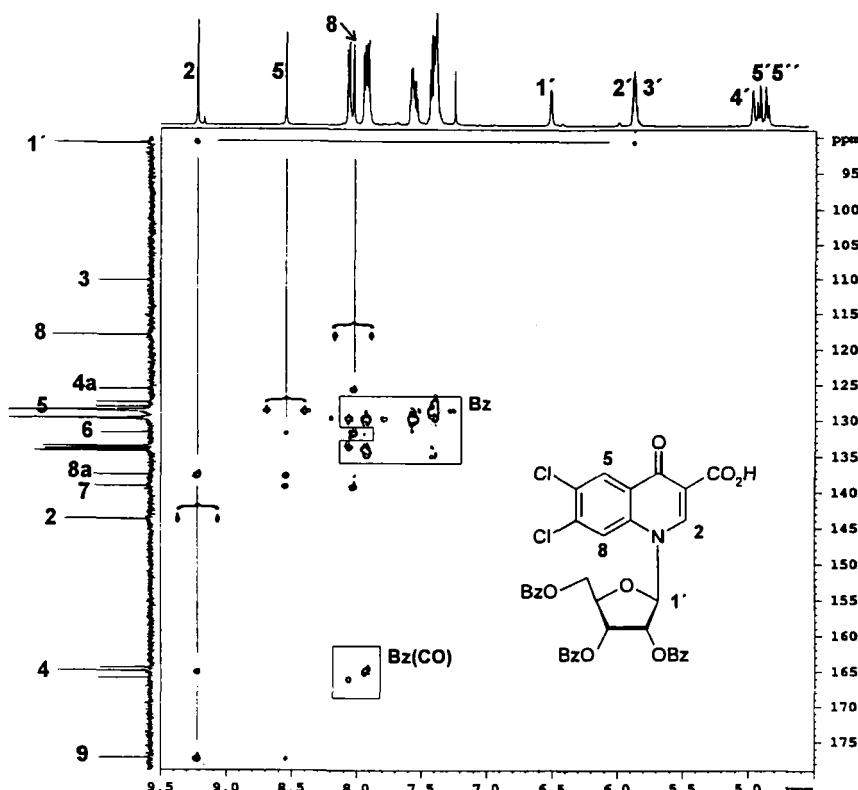


Fig. 2 2D Gradient selected HMBC spectrum of **4** in CDCl_3 (300 K, 600 MHz). Residual $^1\text{J}_{\text{C},\text{H}}$ couplings are indicated by brackets.

Compound **5** was obtained as a mixture of α and β anomers. At 600 MHz the resonances are well separated to allow a complete assignment (Tab. 1). Deblocking of (**5**) with methanolic ammonia gave a mixture of α - and β -anomers of the free nucleosides, which on recrystallization from ethanol afforded mainly α -anomer (**5a**). The intense ROE between $\text{H-1}'$ and H-2^{proS} indicates the α -anomer. N-glycosylation was proven by the ROE between $\text{H-1}'$ and H-8 . The signal at δ_{C} 120.7 was assigned to C-8 as it has a cross peak to δ_{H} 8.36 of H-8 in the HMQC spectrum. The resonance at δ_{C} 118.8 was attributed to C-5, H-5 appears as doublet at δ_{H} 8.23. The olefinic C-2 at δ 144.4

Table 2

¹³C-NMR chemical shifts [ppm] and *J*_{C,F} coupling constants in CDCl₃ (600 MHz, 300 K)

	3	3a	4	5(α)	5(β)	5a
C-1'	91.1	89.8	90.8	90.5	89.3	91.6
C-2'	74.7	74.9	74.8	38.9	38.7	40.6
C-3'	71.0	71.3	71.0	74.1	74.2	70.3
C-4'	82.2	81.8	82.2	86.0	83.8	97.8
C-5'	63.0	63.7	63.0	63.6	63.4	61.5
<u>heterocyclic ring</u>						
C-2	143.7	142.8	143.9	143.4	142.9	144.4
C-3	109.7	111.9	110.3	108.3	108.5	106.7
C-4	165.3	165.2	165.1		166.1	165.7
C-4a	126.6, J _{4a,F} 6.4 Hz	126.5	125.7	127.5	126.3	126.2, 6.0 Hz
C-5	113.6, J _{5,F} 23.1 Hz	114.5, 29.0 Hz	128.7	113.8	113.4	118.8
C-6	156.0, J _{6,F} 253.7 Hz	155.6, 260 Hz	131.8	156.0, 256 Hz		156.0, 252 Hz
C-7	129.2, J _{7,F} 20.8 Hz	128.8, 20.5 Hz	139.2		129.3	129.1
C-8	118.8	117.7	118.1	118.5	118.8	120.7
C-8a	135.6	135.1	137.6	134.3	134.7	135.6
C-9	177.5	172.7	177.3	177.3	177.2	172.5
<u>miscellaneous</u>						
C=O (OBz)	166.1, 165.1 164.6	165.9 164.6 164.0	166.0 165.1 164.6		165.0 165.2 164.9	
Ortho carbons (Ar)	129.8 129.8	129.8, 127.7	129.8 129.7		131.2 131.1, 131.0	
			129.6			
Meta carbons (Ar)	128.8 128.7 128.6	128.6 128.5 128.4	128.7 128.6		129.1 129.0	
Para carbons (Ar)	134.3 134.0 133.7	134.2 133.9 133.6	134.3 134.0 133.6		140.8 140.6 140.3	
Quat. carbons (Ar)	128.9 128.3 127.6	128.7 128.3 127.7	128.8 128.3 127.7			
Ar-CH ₃					31.2	29.7

correlates with H-2 at δ_H 9.04. The ¹³C and ¹H chemical shifts of the deoxyribose moiety were also identified in the HMQC spectrum with the anomeric carbon at δ_C 91.5 and the residual ring carbons are in regions expected for a deprotected deoxyribose (Table 2).

EXPERIMENTAL

NMR spectra were acquired with a Bruker DRX 600 spectrometer (¹H : 600.13 MHz, ¹³C : 150.91 MHz). The chemical shifts are referenced to tetramethylsilane as internal standard. Spectra were acquired at 300 K in CDCl₃, except for 5a, which was investigated in DMSO-_{4b}.

The quinolone bases 1-3 were prepared according to the references ^{7,15,16}. 7-Chloro-6-fluoro-1,4-dihydro-4-oxo-1-(2,3,5-tri-O-benzoyl- β -D-ribofuranosyl)quinoline-3-carboxylic acid (3), ethyl 7-chloro-6-fluoro-1,4-dihydro-4-oxo-1-(2,3,5-tri-O-benzoyl- β -D-ribofuranosyl) quinoline-3-carboxylic acid (3a), 6,7-dichloro-1,4-dihydro-4-oxo-1-(2,3,5-tri-O-benzoyl- β -D-ribofuranosyl) quinoline-3-carboxylic acid (4), 6-chloro-1-(2-deoxy-3,5-di-O-toluoyl- α - and β -D-erythropentofuranosyl)-7-fluoro-1,4-dihydro-4-oxoquinolin-3-carboxylic acid (5) and 6-chloro-1- α -D-erythropentofuranosyl-7-fluoro-1,4-dihydro-4-oxoquinoline-3-carboxylic acid (5a), were prepared as reported earlier ⁹.

REFERENCES

1. J. T. Smith, C. S. Lewin *The Quinolones*, ed. V. T. Andriole, Academic Press, London, Chapter 2 (1988).
2. T. Miyamoto, J. Matsumoto, K. Chiba, H. Egawa, K. Shibamori, A. Minamida, Y. Nishimura, H. Okada, M. Kataoka, M. Fujita, T. Hirose, J. Nakano, *J. Med. Chem.* 33: 1645 (1990).
3. D. Bouzard, P. Dicesare, M. Essiz, J. P. Jacquet, J.R. Kiechel, P. Remuzon, A. Weber, T. Oki, M. Masuyoshi, R. E. Kessler, J. Fung-Tom, J. Desiderio, *J. Med. Chem.* 33: 1344 (1990).
4. D. C. Hooper, J. C. Wolfson, *New Eng. J. Med.* 324: 384 (1991).

5. L. A. Mitscber, R. M. Zavod, P. V. Devasthale, D. T. W. Chu, L. L. Shen, P. N. Sharma and A. G. Pernet, *Chem. tech.* 50 (1991).
6. A. de la Cruz, J. Elguero, P. Goya, A. Martinez, *Synlett*: 753 (1990)
7. A. de la Cruz, J. Elguero, P. Goya, A. Martinez and E. De Clercq, *J. Chem. Soc. Perkin Trans. I*: 845 (1993).
8. A. D. da Matta, A. M. R. Bernardino, G. A. Romeiro, M. R. P. de Oliveira, M. C. B. V. de Souza and V. E. Ferreira, *Nucleosides & Nucleotides* 15: 889 (1996).
9. N. A. Al-Masoudi, Y. A. Al-Soud, M. Ehrmann, E. deClercq, *Nucleosides & Nucleotides (submitted)*.
10. L. Birkhofer, A. Ritter, *Angew. Chem.* 77: 414 (1965).
11. U. Piantini, O. W. Sørensen, R. R. Ernst, *J. Am. Chem. Soc.* 104: 6800 (1982).
12. a) A. A. Bothner-By, R. L. Stephensen, J. Lee, C. D. Warren, R. W. Jeanloz, *J. Am. Chem. Soc.* 106: 811 (1984) b) A. Bax, D. G. Davies, *J. Magn. Reson.* 63: 207 (1985) c) C. Griesinger, R. R. Ernst, *J. Magn. Reson.* 75: 261 (1987).
13. L. Müller, *J. Am. Chem. Soc.* 101: 4481 (1979).
14. W. Willker, D. Leibfritz, R. Kerssebaum, W. Bermel, *Mag. Res. Chem.* 31: 287 (1993).
15. D. Kaminsky (Warner Lambert Pharmaceutical Co.) Fr. Demande 2,002, 888 (cl. A 61k, C07d), 31 Oct. 1969, us Appl. 29 Feb 1968-30 Dec, 1968 ; pp. 13.
16. H. Koga, A. Itoh, S. Murayama, S. Suzue and T. Ivikura, *J. Med. Chem.* 23: 1358 (1980).

Date Received: February 9, 1998
Date Accepted: March 20, 1998